Suppression of localization in Kronig-Penney models with correlated disorder.

نویسندگان

  • Sánchez
  • Maciá
  • Domínguez-Adame
چکیده

We consider the electron dynamics and transport properties of one-dimensional continuous models with random, short-range correlated impurities. We develop a generalized Poincare map formalism to cast the Schrodinger equation for any potential into a discrete set of equations, illustrating its application by means of a specific example. We then concentrate on the case of a Kronig-Penney model with dimer impurities. The previous technique allows us to show that this model presents infinitely many resonances (zeroes of the reflection coefficient at a single dimer) that give rise to a band of extended states, in contradiction with the general viewpoint that all one-dimensional models with random potentials support only localized states. We report on exact transfer-matrix numerical calculations of the transmission coefFicient, density of states, and localization length for various strengths of disorder. The most important conclusion so obtained is that this kind of system has a very large number of extended states. Multifractal analysis of very long systems clearly demonstrates the extended character of such states in the thermodynamic limit. In closing, we brieBy discuss the relevance of these results in several physical contexts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomalous properties of the Kronig-Penney model with compositional and structural disorder

We study the localization properties of the eigenstates in the KronigPenney model with weak compositional and structural disorder. The main result is an expression for the localization length that is valid for any kind of selfand inter-correlations of the two types of disorder. We show that the interplay between compositional and structural disorder can result in anomalous localization. Pacs nu...

متن کامل

1 N ov 1 99 6 Transport properties of one - dimensional Kronig - Penney models with correlated disorder

Transport properties of one-dimensional Kronig-Penney models with binary correlated disorder are analyzed using an approach based on classical Hamiltonian maps. In this method, extended states correspond to bound trajectories in the phase space of a parametrically excited linear oscillator, while the on site-potential of the original model is transformed to an external force. We show that in th...

متن کامل

Erratum: Suppression of localization in Kronig-Penney models with correlated disorder

The phonon frequencies for pure Al and Ni reported in Table I are wrong. The correct values are reported below. The error originated from a misprint in the paper of M. S. Daw and R. D. Hatcher [Solid State Commun. 56, 697 (1985}]in Eq. (4) for the phonon frequencies in reciprocal space. (The formula is corrected in a reference note of the paper of S. M. Foiles and J. B. Adams [Phys. Rev. B 40, ...

متن کامل

Band Spectra of Kronig-Penney Model with Generalized Con- tact Interaction

We extend the standard Kronig-Penney model with periodic δ potentials to the cases with generalized contact interactions under the assumption that the system has time-reversal symmetry. By applying Bloch theorem, the eigenvalue equation which determines the dispersion relation for onedimensional periodic array of the generalized contact interactions is deduced within the framework of the transf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. B, Condensed matter

دوره 49 1  شماره 

صفحات  -

تاریخ انتشار 1994